Трансформатор для усилителя авто

Как рассчитать мощность трансформатора для усилителя мощности, какой выбрать и как сделать своими руками

Во многих электронных устройствах (радиоприемниках, телевизорах, компьютерах, магнитофонах, плеерах, мобильных телефонах) присутствует усилитель мощности. Независимо от вида оборудования его задача заключается в преобразовании внутреннего сигнала в звук. Мощность трансформаторов, используемых для усилителя мощности, зависит от того, какая громкость требуется на выходе.

Устройство и принцип работы усилителя звука

Усилителем звука называется комплект деталей, установленный на плате, с входом и выходом, для работы которого необходим внешний источник питания. Усилитель мощности (УМ) всегда расположен на выходе, поэтому его называют оконечным.

Такое устройство может усиливать:

Выполняется как часть (функциональный блок) аппаратуры или самостоятельное устройство.

Для больших антенн и громкоговорителей требуются усилители с высоким коэффициентом усиления (десятки или даже сотни кВт). Он достигается одновременным повышением тока и напряжения. Эти устройства бывают бестрансформаторные и трансформаторные.

Самый распространенные в быту ламповые трансформаторные усилители. В профессиональном оборудовании трансформатор используется, если необходимо сгладить звенья длинной проводки, разведенной по сравнительно большой площади.

Трансформаторным называется усилитель, в котором это устройство установлено на выходе для гармонизации низких частот и предохранения оборудования от короткого замыкания.

Основной недостаток использования в усилителе звука трансформатора – увеличение габаритов и веса.

УМЧЗ усиливает сигналы, содержащие информацию о звуке в телемеханике, вычислительной и измерительной технике, дефектоскопии. В этот вид усиливающей аппаратуры кроме УМ устанавливается предварительный усилитель с эквайзером или регулятором тембра и громкости. Его предназначение – доведение напряжения и мощности до показателей, необходимых для функционирования оконечного УМ, подключенного к модулятору приемника, наушникам, колонкам.

УНЧ встраиваются в радиотрансляционное, звукозаписывающее и звуковоспроизводящее оборудование, в том числе в транспортных средствах.

Выход усилителя звука (УЗ) может быть одно- или двухкаскадный, работающий в одном из трех режимов:

Варианты схематических решений

Самый простой усилитель класса низких частот состоит из двух одинаковых транзисторов, подключенных через эмиттер (биполярный транзистор), и выходного трансформатора, первичная обмотка которого состоит из 2-х одинаковых половин. Питание из внешнего источника на транзисторы подается через первичную обмотку.

На один транзистор подается положительное, на второй – отрицательное напряжение, которое периодически меняется на противоположное. Транзисторы работают поочередно, поэтому прибор называется двухтактным. Токи суммируются к обмотке, оконечный трансформатор выдает более низкие и мощные колебания.

Для повышения мощности в схему включаются резисторы, снимающие напряжение смещения с транзисторов. На трансформатор ток подается через половинки вторичной обмотки, соответствующие половинкам первичной. Высокие частоты на выходе отделяет конденсатор. Для питания такого УЗ можно использовать сетевой блок питания или батарейки.

В двухтактном УМЧЗ 2 трансформатора: входной (предварительный) и выходной (оконечный), напряжение на транзисторы подается из первого. Один транзистор открывается, второй остается закрытым, через какое-то время положение меняется на противоположное. Для питания требуется блок из резисторов, конденсаторов, сетевого фильтра, силовых транзисторов, переключающих напряжение.

Какой трансформатор нужен

При покупке, аренде или изготовлении УЗ учитывается требуемая мощность и вид акустической системы.

Какая мощность лучше, определить достаточно сложно. Все зависит от личных предпочтений. Кому-то в квартире требуется 500 Вт, кто-то способен озвучить большой зал при 200 ваттах. Важна так же чувствительность акустики и грамотность специалиста, который будет сидеть за пультом.

Не менее важны такие параметры, как чистота звука и надежность оборудования, но определить их можно только косвенно.

При выборе достаточно учесть, что мощность усилителя должна быть выше мощности акустической системы. В противном случает УЗ не сможет обеспечить необходимые для работы колонок условия.

Расчет параметров

Усилители и акустика для использования в быту работают на комфортной громкости, равной 5-10% от мощности, указанной в техдокументации. При использовании профессионального оборудования показатель увеличивается до 40-60%.

Слушать что-то при максимальной мощности просто невозможно, так как звук сильно искажается. То есть, при покупке профессионального усилителя на 1 киловатт необходимо учесть, что во время работы будет использоваться примерно 300 Вт на усиление звука, при потреблении электроэнергии 700 Вт.

Бытовой прибор на 200 Вт отключится при мощности 100 Вт (если имеется встроенная система защиты). На максимуме он способен работать всего несколько секунд при озвучивании громких звуков (например, выстрелов при просмотре фильма).

Цена будет зависеть от качества колонок: чем оно выше, тем меньше может быть мощность усилителя.

Как выбрать подходящий

Основной ориентир – цель покупки усилителя. При питании от автономного генератора акустика должна быть максимально чувствительная, усилитель с высоким КПД (желательно класса «Д»).

При питании от электросети выбор шире, так как ограничивается качеством акустики, площадью и личными предпочтениями. Цена будет зависеть от качества колонок – чем оно выше, тем меньше может быть мощность усилителя.

Читайте также:  Чехол для панели авто

Изготовление тороидального трансформатора своими руками

Тороидальный трансформатор является лучшим вариантом для усилителя благодаря сильному выходному сигналу, небольшим габаритам, невысокого сопротивления и высокого КПД.

Выбор материала сердечника

Тор обязательно должен быть изготовлен из специальной стали, если усилитель подключается к бытовой электросети. При питании от постоянного тока 12 В сердечник может быть ферритовый.

Как рассчитать

Для расчета мощности используется формула:

U – напряжение холостого хода

cos f = 0,8 (коэффициент мощности)

n =0,7 (коэффициент КПД)

Для определения площади сечения сердечника, соответствующего рассчитанной мощности, используется специальная таблица. Далее нужно найти другую таблицу, по которой определяется количество витков в зависимости от площади сечения тора.

Как изготовить: пошаговая инструкция

Каркас нужно сделать из прочного диэлектрика. Провода лучше всего выбрать медные в эмалевой изоляции с сечением 1-2 мм (для первичной обмотки) и 5-7 мм (для вторичной) при токе 25 А на первичной и 150-200 А на вторичной обмотке. Обе обмотки распределяются по всему тору.

Особое внимание уделяется первичной обмотке. Каждый слой необходимо заизолировать строительным скотчем или лакотканью, нарезанной полосками с шириной 1,2 см.

Проверка

Первая проверка (измерение тока холостого хода) проводится после того, как закончена намотка первички. Тестер в режиме амперметра подключается последовательно вместе с лампочкой накаливания на 40 Вт. Источник света горит, если витков недостаточно, если все в порядке, нить накала розовая. Чем меньше ампер показывает прибор, тем лучше (оптимально ниже 10 мА).

После намотки второй обмотки необходимо проверить трансформатор на обрывы и замыкание между обмотками и на корпус. О разрыве свидетельствует единица на экране тестера при измерении сопротивления обмотки. При замыкании между витками первой обмотки слышится треск и появляется дым. Вторичная обмотка неисправна, если результат на экране на 20 или более процентов ниже контрольного.

Источник

AudioKiller’s site

Audio, Hi-Fi, Hi-End. Электроника. Аудио.

Материалы раздела:

Трансформатор для питания усилителя

О том, что для усилителя мощности не обязательно использовать очень мощные трансформаторы я писал в статье «Расчет источника питания УМЗЧ«. Почему-то в народе статья большого отклика не нашла — так все и продолжают советовать друг другу в усилитель мощностью 50 Вт ставить трансформатор мощностью 250 ВА. Хотя тут вполне можно использовать транс в 60 ВА. Тем не менее некоторые профи несколько меня покритиковали. Их замечания сводились к двум пунктам:

Чтобы еще раз это все проверить и доказать, что я прав, я собрал небольшую кучку трансформаторов мощностью 20…250 ВА на напряжение 2х24 вольта и приступил к экспериментам.

Я взял стерео усилитель, в его блок питания устанавливал исследуемый трансформатор и подавал на вход либо музыкальный стереосигнал со звуковой карты компьютера (для реалистичных испытаний), либо синусоиду (для тестов). К усилителям был подключен клип-детектор, позволяющий определять моменты ограничения сигнала. Вот схема экспериментальной установки:

Эксперимент проводился следующим образом: я использовал два музыкальных фрагмента с пик-фактором 13 дБ и 16 дБ. На каждом из них я устанавливал наибольшую громкость, но так, чтобы не было ограничения. После этого измерял уровень выходного сигнала и вычислял выходную мощность как мощность синусоидального сигнала с амплитудой, равной амплитуде музыкального сигнала. Все это я проделывал с разными трансформаторами и разными конденсаторами фильтра питания (от 2200 мкФ до 40 000 мкФ).

Скажу сразу — я оказался прав по обоим пунктам.

Действительно, для получения большой выходной мощности усилителя вполне достаточно трансформатора сравнительно небольшой мощности (и моя программа считает абсолютно верно!). Вот графики результатов исследований, здесь разные линии одного цвета соответствуют разным емкостям конденсаторов фильтра:

В конце-концов, все линии переходят в горизонталь: самая максимальная выходная мощность ограничена напряжением питания. Так что вместо тупого наращивания мощности трансформатора, гораздо выгоднее поднять напряжение питания (если такое возможно).

Наибольшая зависимость выходной мощности от мощности трансформатора (и самая низкая выходная мощность) получается для синусоиды. Это как раз то, о чем мне говорили оппоненты: под большой постоянной токовой нагрузкой сильно падает напряжение на обмотках трансформатора и конденсаторах фильтра. Для музыки это не так актуально из-за ее большого пик-фактора и маленькой средней мощности.

Для интереса — вот просадки напряжения питания на трансформаторе и выпрямителе под нагрузкой (точнее остаточное напряжение) на синусоиде:

На музыкальном сигнале просадка напряжения намного меньше, ее измерить нормально не получилось из-за непостоянства среднего значения музыкального сигнала (показания вольтметра все время «плавали»).

Вывод 1.

«Тощего» трансформатора вполне достаточно для питания усилителя. Правильный выбор трансформатора по мощности и напряжению позволит получить требуемую музыкальную выходную мощность. Так что использовать в усилителях звукового сигнала супермощные трансы совершенно не нужно. Маленький трансформатор — это и маленькие габариты, и маленькая цена.

Очень важно! Это все годится только для воспроизведения записанной музыки. Для исполнения музыки (например гитарный усилитель в рок группе) это не годится, т.к. там совсем другие условия работы всей системы!

Рассмотрим второй пункт. А будет ли перегреваться трансформатор? Рассчет по моей программе трансформатора для усилиеля 2х40 Вт дал требуемую мощность трансформатора 35 ВА. Я изготовил именно такой трансформатор (он участвовал и в предыдущих измерениях) и провел на нем проверку. В дальнейшем я использовал этот транс в деле (он предназначался для питания усилителя), поэтому я сделал его с пониженной индукцией (чтобы он давал меньше помех, т.к. он стоИт близко к плате предусилителя). В результате число витков обмоток получилось на 20% больше, значит и их сопротивление тоже на 20% больше, а на большем сопротивлении получается больший нагрев. Таким образом, если этот трансформатор у меня не перегреется, то обычный трансформатор тем более перегреваться не будет.

Читайте также:  Топ пищалок для авто

Вот первый эксперимент.

Я поместил трансформатор под крышку так, чтобы не было никакой вентиляции. 2 часа работы — никакого перегрева.

Однако моих критиков этот эксперимент не удовлетворил. Мне сказали, что в настоящем усилителе греется не только трансформатор, но и радиаторы, поэтому на самом деле температура в усилителе выше (несмотря на вентиляцию) и вот там-то трансформатор и перегреется.

Ну что ж, с радиаторами, так с радиаторами. У меня есть подходящий корпус, куда поместилось все вместе с радиаторами:

Два канала усилителя, два выпрямителя и трансформатор — все как раз уместилось. Вентиляционные отверстия в днище корпуса в данном случае не работают — у корпуса нет ножек, поэтому он дном лежит на столе, и воздух в отверстия не попадает. Вот как выглядит это все в рабочем виде:

В крышке отверстий нет, так что это самый неприятный случай корпуса без вентиляции. Уж тут температура будет наиболее максимальной! На фото видно две нагрузки из мощных резисторов и плата клип-детектора.

Включил в сеть, на вход подал музыкальный сигнал максимальной амплитуды (чтобы клип-детектор срабатывал, т.е. усилитель работал с небольшой перегрузкой), и 2 часа погонял всю эту систему.

Трансформатор не перегрелся! (Вот на синусоиде он бы наверняка перегрелся, но мы-то создаем систему для воспроизведения музыки, а не синусоиды!)

Вывод 2. Маломощный трансформатор годится для питания аппаратуры по всем параметрам. Проверка в самых жестких условиях это подтвердила.

И в заключение о конденсаторах фильтра. Вот зависимость выходной мощности стерео усилителя от суммарной емкости фильтра (с учетом конденсаторов, установленных на платах усилителей) для двух трансформаторов мощностью 35ВА и 80ВА и разных пик-факторах сигнала:

Видно, что при небольшой емкости мощность снижается. А повышать емкость выше 10 000…15 000 мкФ смысла нет. Моя программа говорит о том же. При самой большой емкости максимальная выходная мощность несколько падает (особенно на маломощном трансе) — это из-за того, что при этом получаются большие зарядные токи и падение напряжения на обмотках трансформатора тоже повышается.

Вывод: слишком маленькие емкости и мощности все же вносят какие-то неприятные изменения в сигнал, так что их лучше не использовать.

Источник

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Преобразователь напряжения для питания автомобильного усилителя

Эта статья содержит описание схемы простейшего импульсного повышающего преобразователя для авто усилителей (например на TDA7294 или любой другой микросхеме с двухполярным питанием), без лишних расчетов или теорий только необходимый минимум. Это действительно самый простой способ на сегодня запустить усилитель достаточно высокой мощности в автомобиле, с бортовым питанием 12 В. Представленный инвертор может выдавать постоянную мощность около 100 Вт, а при небольшой доработке схемы ещё больше.

Схема и описание преобразователя

Схема была разделена на несколько частей для облегчения описания и понимания сути работы деталей.

Зеленая часть представляет собой генератор, использующий популярную микросхему TL494. Чтобы сделать структуру максимально простой, использовалась только часть м/с, а именно только генератор. Частота его работы определяется элементами R4 и C4. Для текущих значений (10 кОм и 1 нФ) она составляет около 30 кГц. Увеличив частоту также можно повысить эффективность, но для этого необходимо намотать трансформатор более тонкими проводами (из-за скин-эффекта).

Желтая часть — усилители тока. Они используются только для облегчения повторной загрузки затворных мощностей мосфетов, которые разгружают внутренние выходные транзисторы в TL494. Фактически, схема в текущей конфигурации будет работать и без них, потому что внутренние транзисторы TL494 в принципе могут управлять одним затвором без особых проблем, но в случае падения напряжения в источнике питания инвертор может работать нестабильно. Вот почему рекомендуется установить их. В этой роли практически любой транзистор может быть использован для создания комплементарной пары. Схема также хорошо работает например с парой BC547 / BC557 и т.п.

Оранжевая часть — это ключевые выходные элементы. Мосфет включается при получении импульса от предыдущего каскада. Преобразователь включает мосфеты попеременно с так называемым мертвым временем (когда оба выключены). Особое внимание следует уделить C8 (10 нФ) и R12 (4,7 Ом), потому что от них зависит безопасность транзисторов. Они используются для подавления перенапряжений, возникающих в индуктивности во время переходных процессов. Используйте конденсатор 10 нФ на минимальное напряжение 250 В и резистор 3,3 … 4,7 Ома с минимальной мощностью 0,5 Вт.

Читайте также:  Авто для активного отдыха

Для преобразователя могут быть выбраны разные типы мосфетов, в значительной степени от них зависит, какой мощности и эффективности удастся достичь. Важно выбирать с низким сопротивлением и большим рабочим током. Тут использовались IRF3205, но одинаково хорошо заработают IRFZ44n, BUZ11 или IRFP064n для немного большей мощности.

Красная часть — трансформатор с выпрямителем. Про трансформатор и его перемотатку будет чуть ниже. Сейчас остановимся на схеме выпрямления и фильтрации. Это классический симметричный источник питания, в котором используются ультрабыстрые выпрямительные диоды или диоды Шоттки. В данном случае использовался диод MBR10100CT. Ещё нужен выходной дроссель и конденсаторы фильтра. Для одной микросхемы TDA7294 просто используйте 2200 мкФ + 100 нФ на каждое плечо. Ставьте нормальный электролитический конденсатор, нет необходимости использовать конденсаторы с низким ЭПР.

Предохранители инвертора

Схему контроля выходного тока будет лучше заменить на так называемый электронный предохранитель, который в случае короткого замыкания будет отключать преобразователи (потребуется перезапуск). Схема управления током в инверторе с питанием, сделанным для конкретной системы (в данном случае стерео TDA7294 для громкоговорителя 8 Ом), может отключить преобразователь только во время басов, когда усилитель потребляет больше энергии.

Модуль управления имеет предохранитель в виде резистора R11. Используем стандартный 4.7R 0.25W резистор — в случае короткого замыкания в TL494 или усилителях тока, резистор немедленно перегорает. Силовая часть защищена предохранителем на 10 А. В вышеуказанной схеме короткое замыкание на выходе вызывает его немедленное сгорание.

Сборка преобразователя питания

Можно вытравить полноценную печатную плату, а можно использовать универсальную макетку. Важно, чтобы пути тока были максимально короткими и толстыми.

Сначала собираем зеленую, желтую и оранжевую части. При этом схема питается через маленькую лампочку (например, 10 Вт) или установите ограничение тока 200 мА на блоке питания. Подключите один щуп осциллографа к источнику питания плюс, а другой — к усилителям УТ. Должны увидеть прямоугольную осциллограмму с амплитудой около напряжения питания. Форма волны должна быть очень похожей на фото.

Если сигнал не отображается, проверьте правильность сборки и работоспособность зеленой и желтой секций ИБП.

Затем подключаем осциллограф параллельно мосфетам и наблюдаем форму сигнала там. Это должен быть прямоугольник с амплитудой, аналогичной напряжению питания. Если он не просматривается, это означает, что установили поврежденный mosfet (или неправильно впаяли его).

Если все в порядке, можем начать наматывать трансформатор.

Намотка трансформатора

Трансформатор — самый важный элемент и самый сложный. Во-первых, нужно достать ферритовый сердечник. Можно добыть его из блока питания ATX или другого импульсного преобразователя. Крайне важно, чтобы это был сердечник без зазора, иначе инерционный ток преобразователя будет выше, а КПД будет значительно ниже. В худшем случае может вообще не работать. Чтобы разобрать такой трансформатор, нагрейте его в кипящей воде, потому что тогда смола размягчится. Затем, используя тряпку, разломите горячий трансформатор. Важно не повредить сердечник. Затем снимаем заводские обмотки и наматываем новые в соответствии с инструкциями далее.

Начнем с первичной обмотки. В ней две обмотки должны быть намотаны по 3 витка одновременно, где начало второй является концом первой. Обе обмотки намотаны в одном и том же направлении. Из-за того что инвертор работает на высокой частоте, возникает скин-эффект. Поэтому не стоит намотать трансформатор одним толстым проводом, как в случае классических трансформаторов. Для данного инвертора намотаем 4 провода по 0,3 мм. Обмотка должна выглядеть примерно так:

Теперь изолируйте первичку от вторички. Например слоями скотча. Пришло время намотать вторичную обмотку. Намотайте две обмотки по 7 витков. Трансформатор готов.

Вместо основного предохранителя вставляем лампу значительной мощности (предпочтительно 50 Вт, чтобы при малом токе она не вызывала значительного падения напряжения). Измеряем ток, потребляемый преобразователем, должно составлять 100-250 мА. Форма сигнала на осциллографе должна быть прямоугольной с требуемой амплитудой.

Инвертор практически закончен. Осталось смонтировать схему выпрямителя со сверхбыстрыми диодами или диодами Шоттки. Далее устанавливаем дроссель и фильтрующие конденсаторы.

Выходной дроссель в этом инверторе будет необходим. С натяжкой он может работать и без него, но его эффективность станет меньше и может быть слышен писк под нагрузкой. Дроссель наматывается на порошковое кольцо. Вы можете также выпаять его от источника питания ATX. Обмотка двойная по 17 витков (значение выбрано методом проб и ошибок).

Выходное напряжение инвертора должно быть примерно +/- 36 В. Это оптимальное значение для микросхем TDA7294.

Инвертор должен быть нагружен для испытаний электронной нагрузкой или мощным резистором с сопротивлением 50 Ом. Резистор будет выдавать около 100 Вт мощности в виде тепла. Выходное напряжение преобразователя под этой нагрузкой не должно падать ниже 32 В. Наиболее теплым элементом должны быть выпрямительные диоды. Трансформатор должен слегка нагреваться, как и мосфеты. Тест 100 Вт должен занять 10 минут.

Нужен ли стабилизатор напряжения

Стабилизация выходного напряжения на БП усилителя звука — плохая идея. Усилитель имеет очень нелинейное энергопотребление, кроме того, когда проходит бас, он может потреблять много энергии (в импульсе). Обратная связь для управления выходным напряжением может мешать реакции на повышенное энергопотребление.

Источник

Поделиться с друзьями
admin
Полезные авто советы