Топливные системы японских авто

Как работает система впрыска топлива с электронным управлением?

Система впрыска топлива с электронным управлением работает на некоторых основных принципах. Далее подробно описана работа системы впрыска топлива с электронным управлением (EFI) стандартного типа.

Система впрыска топлива с электронным управлением может быть подразделена на три основные подсистемы. Это: система подачи топлива, система всасывания воздуха и электронная система управления.

Система подачи топлива
— Система подачи топлива состоит из топливного бака, топливного насоса, топливного фильтра, подающего топливопровода (направляющей-распределителя для топлива), топливной форсунки, регулятора топливного давления и обратного топливопровода.
— Топливо подается из бака в форсунку с помощью электрического топливного насоса. Насос обычно расположен внутри или рядом с топливным баком. Загрязнения отфильтровываются высокомощным встроенным топливным фильтром.
— Постоянное давление топлива поддерживается при помощи регулятора топливного давления. Топливо, не направленное во всасывающий трубопровод через форсунку, возвращается в бак по обратному топливопроводу.

Система всасывания воздуха
— Система всасывания воздуха состоит из очистителя воздуха, дроссельного клапана, воздухозаборной камеры, всасывающего коллектора и впускного клапана.
— Когда дроссельный клапан открыт, воздух проходит через очиститель воздуха, через расходомер воздуха (в системах типа L), через дроссельный клапан и хорошо отрегулированный впускной патрубок во впускной клапан.
— Подача воздуха в двигатель – это функция, требующая привода. По мере открытия дроссельного клапана в цилиндры двигателя впускается больше воздуха.
— В двигателях марки «Тойота» используются два различных метода измерения объема впускаемого воздуха. В системе EFI типа L поток воздуха измеряется напрямую с помощью расходомера воздуха. В системе EFI типа D поток воздуха измеряется косвенно с помощью мониторинга давления во всасывающем коллекторе.

Электронная система управления
— Электронная система управления состоит из различных датчиков двигателя, электронного управляющего блока (ECU), устройства топливной форсунки и соответствующей проводки.
— Блок ECU определяет точное количество топлива, которое необходимо подать форсунке, с помощью мониторинга датчиков двигателя.
— Для подачи в двигатель воздуха/топлива в соответствующей пропорции блок ECU включает форсунки на точный период времени, который называется шириной импульса впрыска или продолжительностью впрыска.

Основной режим работы
— Воздух попадает в двигатель через систему всасывания воздуха, где он измеряется расходомером воздуха. Когда воздух попадает в цилиндр, топливо смешивается с воздухом с помощью топливной форсунки.
— Топливные форсунки расположены во всасывающем коллекторе за каждым впускным клапаном. Форсунки представляют собой электроклапаны, управляющийся блоком ECU.
— Блок ECU посылает импульсы на форсунку путем включения и выключения цепи заземления форсунки.
— Когда форсунка включена, она открывается, распыляя топливо на заднюю стенку впускного клапана.
— Когда топливо распыляется во всасываемый поток воздуха, оно смешивается с входящим воздухом и испаряется благодаря низкому давлению во всасывающем коллекторе. Электронный управляющий блок посылает сигналы на форсунку, чтобы обеспечить подачу топлива, достаточного для достижения идеальной пропорции воздух/топливо 14,7:1, которая часто называется стехиометрией.
— Подача точного количества топлива в двигатель – это функция электронного управляющего блока.
— Блок ECU определяет основной объем впрыска на основании измеренного объема воздуха и оборотов двигателя.
— Объем впрыска может изменяться в зависимости от условий эксплуатации двигателя. Блок ECU отслеживает такие переменные величины, как температура охлаждающей жидкости, скорость двигателя, угол дросселя и содержание кислорода в выхлопе и производит корректировку впрыска, которая определяет окончательный объем впрыска.

Преимущества системы EFI
Равномерное распределение воздухо-топливной смеси
Каждый цилиндр имеет собственную форсунку, которая подает топливо непосредственно на впускной клапан. Это позволяет избежать необходимость подавать топливо через всасывающий коллектор, что улучшает распределение между цилиндрами.

Высокоточный контроль пропорции воздуха и топлива при всех условиях эксплуатации двигателя
Система EFI постоянно подает в двигатель точную пропорцию воздуха и топлива вне зависимости от условий эксплуатации. Это обеспечивает лучшие дорожные качества автомобиля, экономию топлива и контроль выхлопных газов.

Превосходная реакция дросселя и мощность
За счет подачи топлива непосредственно на заднюю стенку впускного клапана устройство всасывающего коллектора можно оптимизировать, чтобы повысить скорость движения воздуха через впускной клапан. Это улучшает крутящий момент и работу дросселя.

Значительная экономия топлива и улучшенный контроль выхлопных газов
В двигателях с системой EFI обогащение при холодном запуске и широко открытом дросселе можно сократить, поскольку смешивание топлива не представляет проблемы. Это позволяет экономить топливо в целом и улучшить контроль выхлопных газов.

Улучшенные пусковые и эксплуатационные качества холодного двигателя
Улучшенное распыление в сочетании со впрыском топлива непосредственно на впускной клапан улучшает пусковые и эксплуатационные качества холодного двигателя.

Упрощенная механика, сниженная чувствительность к регулировке
Система EFI не зависит от регулировки обогащения топливной смеси при холодном запуске или измерения топлива. Поскольку система проста с механической точки зрения, требования к техническому обслуживанию снижены.

Управление искрой зажигания
Система EFI/TCCS регулирует угол опережения искры зажигания, отслеживая эксплуатационные условия двигателя, вычисляя оптимальную продолжительность зажигания и зажигая свечу в соответствующее время.

Контроль числа оборотов холостого хода
Система EFI/TCCS регулирует число оборотов холостого хода с помощью нескольких устройств разного типа, контролируемых электронным управляющим блоком (ECU). Блок ECU отслеживает эксплуатационные условия двигателя и определяет необходимое число оборотов холостого хода.

Рециркуляция выхлопных газов
Система EFI/TCCS регулирует периоды включения рециркуляции выхлопных газов (EGR) в двигателе. Контроль достигается за счет использования клапана переключения вакуума системы EGR.

Другие системы двигателя
Кроме основных описанных систем электронный регулирующий блок системы TCCS часто контролирует трансмиссию с электронным управлением (ECT), изменяемую всасывающую систему, сцепление компрессора кондиционера воздуха и турбонагнетатель.

Система самодиагностики
Система самодиагностики включена в блоки ECU всех систем TCCS и некоторых обычных систем EFI. Обычный двигатель c системой EFI, оснащенной функцией самодиагностики – это система Р7/EFI. Данная система диагностики использует предупредительную лампочку проверки двигателя в сочетании с измерительным устройством, которое предупреждает водителя об обнаружении неисправностей в системе управления двигателем. Лампочка проверки двигателя также высвечивает ряд кодов диагностики в помощь механику при выявлении и устранении неисправностей.

Читайте также:  Объемы багажников авто хэтчбек

Краткий обзор
Система впрыска топлива с электронным управлением состоит из трех основных подсистем.
— Электронная система управления определяет основной объем впрыска по электросигналам расходомера воздуха и оборотам двигателя.
— Система подачи топлива поддерживает постоянное давление топлива на форсунке. Это позволяет блоку ECU контролировать продолжительность впрыска топлива и подавать топливо в объеме, соответствующем условиям эксплуатации двигателя.
— Система всасывания воздуха подает воздух в двигатель по требованию водителя. Воздушно-топливная смесь образуется во всасывающем коллекторе по мере продвижения воздуха по впускному каналу.

Источник

Общий обзор системы подачи топлива
Система подачи топлива включает следующие компоненты:

1) Топливный бак (с регуляторами выделения паров топлива).
2) Топливный насос.
3) Топливный трубопровод и проходной фильтр.
4) Трубопровод подачи топлива (топливная направляющая).
5) Демпфер пульсации (во многих двигателях).
6) Топливные форсунки.
7) Форсунка холодного запуска (во многих двигателях).
8) Регулятор топливного давления.
9) Обратный топливный трубопровод.

Топливо перекачивается из бака электрическим топливным насосом, который регулируется реле размыкания цепи. Топливо проходит через топливный фильтр на топливную направляющую (в трубопровод подачи топлива) и вверх к регулятору давления, где оно удерживается под давлением. Регулятор давления поддерживает давление топлива в направляющей на определенном уровне выше уровня давления во всасывающем коллекторе. Таким образом, достигается постоянное снижение давления на топливных форсунках вне зависимости от нагрузки на двигатель. Излишек топлива, не израсходованный двигателем, возвращается в бак по обратному топливному трубопроводу. Демпфер пульсаций, установленный на топливной направляющей, используется в некоторых двигателях для гашения скачков давления в топливной направляющей при открытии и закрытии форсунок.

Топливные форсунки, непосредственно контролирующие измерение топлива, попадающего во всасывающий коллектор, получают импульсы от электронного управляющего блока (ECU). Блок ECU завершает схему заземления форсунки в течение рассчитываемого периода времени, который называется продолжительностью впрыска или длительностью импульса впрыска. Блок ECU определяет пропорцию воздуха/топлива для работы двигателя на основании состояния двигателя, отслеживаемого входными датчиками, и параметров, сохраненных в памяти устройства.

Во время холодного запуска двигателя многие двигатели используют форсунку холодного запуска, предназначенную для улучшения пусковых характеристик при температуре охлаждающей жидкости ниже требуемой.

Компоненты контроля подачи и впрыска топлива
Топливные насосы

В течение многих лет компания Toyota использовала в системах EFI два типа электрических топливных насосов. В более ранних стандартных системах EFI использовался многорядный насос, установленный снаружи. Этот камерный насос включал в себя демпфер импульсов давления или глушитель, предназначенный для выравнивания импульсов давления и обеспечения бесшумной работы.

В двигателях, установленных на более поздних моделях, использовался встроенный насос, объединенный с устройством подачи топлива. Этот турбинный насос работает на более низких разрядных импульсах и более бесшумно, чем многорядный насос. Техническое обслуживание встроенных насосов производится после удаления устройства подачи топлива из бака. Перед установкой насоса на место необходимо убедиться, что соединительный шланг насоса в исправном состоянии.

У обоих насосов есть много общих характеристик. Они относятся к погруженным насосам, поскольку электромотор погружен в топливо. Пропуская топливо через насос, мотор получает охлаждение и смазку.

В выпускное отверстие вмонтирован обратный клапан для поддержания остаточного давления при выключенном двигателе. Это снижает возможность образования паровой пробки и улучшает пусковые характеристики. Клапан сброса давления используется для предотвращения чрезмерного давления и возможных утечек топлива в случае блокировки нагнетательного или обратного трубопровода.

Электрические регуляторы топливного насоса и реле размыкания цепи
Цепи с реле размыкания цепи. В двигателях Toyota с системой EFI используются три типа цепи регулирования топливного насоса. Один тип регулирования применяется только во впрыском типа L, использует контакт Fc расходомера воздуха для замыкания обмотки заземления реле размыкания цепи. Это устройство безопасности, которое предохраняет топливный насос от работы при неработающем двигателе.

Второй тип регулировки топливного насоса использует электронный управляющий блок (ECU) для контроля тока обмотки реле размыкания цепи управления. Он применяется в двигателях, оснащенных системой EFI типа D, а также в системах 7M-GTE, где используется вихревой расходомер воздуха Кармана. Это устройство безопасности предотвращает работу топливного насоса в тех случаях, когда блок ECU не получает сигнала Ne (обороты двигателя). В этих условиях блок ECU снимает заземление с обмотки реле размыкания цепи.

Контроль скорости работы топливного насоса
Третий тип цепи регулирования топливного насоса использует электрическую цепь двухскоростного насоса. В зависимости от двигателя реле размыкания цепи может приводиться в действие блоком ECU или контактом Fc расходомера воздуха. Однако ток насоса подается либо через токоограничивающий резистор, либо напрямую на насос, в зависимости от нагрузки на двигатель, оборотов двигателя и состояния сигнала STA.

Когда двигатель запускается или работает на высокой скорости и/или при больших нагрузках, блок ECU отключает TR1, замыкая контакт «А»реле управления топливного насоса. Это позволяет току проходить прямо на топливный насос, заставляя его работать на высокой скорости.

В других эксплуатационных условиях блок ECU включает TR1, который подает питание на реле управления топливного насоса. Это замыкает контакт В реле и заставляет ток проходить через резистор, при этом насос работает на низкой скорости. Система контроля скорости топливного насоса предназначена для снижения потребления электричества и износа насоса при низкой потребности в топливе и для подачи соответствующего объема топлива при высокой потребности в топливе.

Контрольные клеммы топливного насоса
Для облегчения контроля и обеспечения работы насоса независимо от расходомера воздуха или блока ECU во всех двигателях используется линейный испытательный искатель топливного насоса.

Существует два основных типа контрольных схем топливного насоса. В последних моделях двигателей с системой компьютерного управления марки «Тойота» используется контрольная клемма Fp, расположенная в испытательном искателе. При включенном зажигании клеммная перемычка от +В на клемму Fp направляет ток напрямую на топливный насос.

В более ранних двигателях используется клеммная перемычка, относящаяся к испытательному искателю топливного насоса 2Р. Эта перемычка при переключении подает заземление на обмотку реле размыкания цепи, что позволяет ей работать независимо от контакта Fc расходомера воздуха.

Читайте также:  Пороги авто залиты пеной

Топливный фильтр
Топливный фильтр, установленный между насосом и топливной направляющей, удаляет загрязнения из топлива до его подачи в форсунки и регулятор давления.

Хотя топливный фильтр может загрязниться или даже полностью засориться, это крайне маловероятно из-за высокой пропускной способности и качества фильтров марки «Тойота». Считается, что этот фильтр не требует технического обслуживания, и между периодической замены не рекомендуется периодическое обслуживание.

В случае, если фильтр ограничивает поток топлива, двигатель может испытывать неконтролируемые колебания частоты вращения, потерю мощности при нагрузке и серьезные проблемы с запуском. Если необходимо заменить фильтр, учитывайте некоторые важные меры предосторожности.

Меры предосторожности : Открытый нагнетательный топливный трубопровод представляет угрозу воспламенения. Поэтому важно сбросить давление в топливной системе, прежде чем открывать трубопровод рядом с фильтром. Также важно отсоединить отрицательный кабель аккумулятора до открытия трубопровода, поскольку некоторые фильтры расположены вблизи клеммы +В стартера.

Трубопровод подачи топлива (топливная направляющая)
Трубопровод подачи топлива, общеизвестный как направляющая-распределитель для топлива, предназначена для удержания форсунки на месте во всасывающем коллекторе. На трубопроводе подачи топлива установлены демпфер пульсаций (если он используется) и регулятор давления топлива. Трубопровод подачи топлива действует как резервуар для топлива, которое удерживается под давлением до подачи с помощью топливной форсунки.

Регулятор давления топлива
Регулятор давления топлива – это мембрана, приводимая в действие клапаном сброса давления. Для обеспечения точного измерения топлива регулятор давления топлива поддерживает постоянную разницу давления в топливных форсунках. Это означает, что давление в топливной направляющей всегда находится на постоянном уровне, превышающем уровень абсолютного давления в коллекторе.

Указанная разница в давлении составляет 36 фунтов на кв. дюйм (2,55 кг/кв.см) или 41 фунтов на кв. дюйм (2,90 кг/кв.см) в зависимости от применения двигателя. Поддержание разницы давления осуществляется за счет балансировки пружины с помощью давления во впускном трубопроводе. Пружина соединена с мембраной, в основании которой находится шаровой клапан.

Демпфер пульсации
Хотя давление топлива поддерживается на постоянном уровне с помощью регулятора давления, пульсация форсунок вызывает незначительные колебания давления в направляющей. Демпфер пульсации действует как аккумулятор для выравнивания этих колебаний, что обеспечивает точное измерение топлива.

Демпфер пульсации применяется не на всех двигателях, но его можно использовать для быстрой проверки давления топлива в тех двигателя, где он установлен. При наличии давления головка болта в центре мембраны поднимается вместе с крышкой корпуса демпфера.

Система повышения давления топлива
Система повышения давления топлива (FPU) предназначена для снижения возможности образования паровой пробки в топливной направляющей после испарения топлива на горячем двигателе и применяется на многих двигателях с системой компьютерного управления марки Toyota. Она использует клапан переключения вакуума (VSV), регулируемый блоком ECU для открытия жиклера атмосферного давления в трубопроводе, идущем к регулятору давления топлива.

Этот соленоид приводится в действие во время запуска горячего двигателя и работает до двух минут после запуска. Блок ECU заземляет клапан переключения вакуума системы повышения давления на основании сигналов, получаемых от датчиков THW и STA. Подача питания на соленоид впускает атмосферное давление в вакуумную камеру регулятора давления топлива, что повышает давление топлива в направляющей до максимального уровня.
В некоторый двигателях блок ECU также отслеживает сигналы нагрузки и оборотов двигателя (сигналы Vs, PIM и Ne) и подает питание на клапан переключения вакуума при большой нагрузке и высоких оборотах двигателя для обеспечения максимального давления топлива в направляющей.

Контроль давления и объема топлива
Меры предосторожности: До установки датчика давления топлива и проверки давления топлива необходимо осторожно сбросить остаточное давление, чтобы снизить опасность воспламенения при открытии топливного трубопровода. При открытии топливной системы рекомендуется иметь под рукой огнетушитель.
Обычно датчики располагаются на топливной направляющей, топливном фильтре или клапане холодного запуска. Необходимо следовать инструкция руководства по ремонту. Если соединение шланга защищено медной уплотнительной прокладкой, при установке шланга на место после ремонта можно использовать новую прокладку.

Контроль давления и объема топливо можно разделить на шесть отдельных участков.

Приведенные тесты и спецификации являются общим руководством; точные спецификации и операции смотрите в руководстве по ремонту.

Источник

Основы функционирования и самодиагностика.

Прежде всего, хотелось бы напомнить основные принципы работы любой современной автомобильной электронной системы впрыска. В двух словах процесс работы системы впрыска выглядит так: масса воздуха, поступающая в двигатель, измеряется датчиком расхода воздуха, эти данные передаются компьютеру, который на основе этой информации, а также на основе некоторых других текущих параметров работы двигателя, таких, как температура двигателя, температура воздуха, скорость вращения коленчатого вала, степень открытия дроссельной заслонки (и скорость ее открытия), расчитывает необходимое количество топлива, которое нужно сжечь в данном количестве воздуха. После этого компьютер подает на форсунки электрический импульс нужной длительности, форсунки открываются, и топливо, находящееся под давлением в топливной магистрали, впрыскивается во впускной коллектор. Все, дело сделано.

Система TCCS не является исключением и также выпускается в двух вариантах. Мы начнем с более сложного и передового варианта с обратной связью, тем более, что автомобили, приходящие из Японии, имеют именно этот вариант системы, ведь требования к чистоте выхлопа в Японии очень высоки.

Компьютер (ECU)

Таким образом, вся сложность заключается не в написании собственно программы, которая всего-то и делает, что сверяется последовательно с несколькими картами и в результате «добирается» до некоторого значения, а в самих картах, которые должны быть очень точными и подобраны под конкретную модификацию двигателя.

Кроме этого, ECU системы TCCS управляет также и углом опережения зажигания, зависимость которого от различных текущих параметров работы двигателя также задается соответствующими картами.

Читайте также:  Место для мойки авто

Обратная связь


Режимы управления

1. Запуск двигателя. В момент запуска требуется, в зависимости от температуры как самого двигателя, так и окружающего воздуха, обогащенная горючая смесь с повышенным процентным содержанием топлива. Это всем известный факт, характерный вообще для всех бензиновых двигателей внутреннего сгорания, как карбюраторных, так и двигателей с впрыском, поэтому мы не станем подробно останавливаться на причинах. Скажем только, что соотношение воздух/топливо в этом режиме варьируется в среднем от 2:1 до 12:1. В этом режиме компьютер системы TCCS работает в режиме разомкнутого контура.

3. Холостой ход. По достижении заданной температуры двигателя и при условии достаточного для работы разогрева датчика кислорода (датчик кислорода начинает выдавать правильные показания только при температуре от 300C и выше) компьютер переключается в режим замкнутого контура и начинает использовать показания датчика кислорода для поддержания стохиометрического состава горючей смеси (14.7:1), обеспечивающего наименьший уровень содержания токсичных веществ в выхлопных газах.

4. Движение с постоянной скоростью, плавное увеличение или уменьшение скорости. В этом случае компьютер TCCS также находится в режиме замкнутого контура и использует показания датчика кислорода. Вы можете раскрутить двигатель хоть до 6500 об/мин, наполовину нажав педаль газа, но компьютер все-равно будет оставаться в режиме замкнутого контура, обеспечивая состав горючей смеси в пределах примерно от 14.5:1 до 15.9:1.

Каталитический нейтрализатор


Принцип работы датчика кислорода

Так как датчик работает надежно только в хорошо прогретом состояни, то ECU системы TCCS начинает замечать его показания только после определенного уровня прогрева двигателя. Для ускорения прогрева датчика в него зачастую монтируют электрический подогреватель. Бывают датчики с одним проводом (сигнал), бывают с двумя (сигнал, земля сигнала), с тремя (сигнал, 2 провода подогревателя), с четырьмя (сигнал, земля сигнала, 2 провода подогревателя).

Самодиагностика компьютера системы TCCS

Пошаговая процедура самодиагностики:
1. Начальные условия

Считывание кодов диагностики. При считывании кодов возможны две ситуации:
1. Неисправностей не обнаружено:

Код Краткое описание Полное описание
11 ECU (+B) Кратковременный сбой питания ECU
12 RPM Signal Отсутствие сигналов «NE» или «G» на ECU в течение 2 секунд после того, как коленчатый вал начал проворачиваться стартером (при запуске двигателя)
13 RPM Signal Отсутствие сигнала «NE» на ECU в течение 50 мсек или более при скорости вращения коленвала 1000 об/мин и выше
14 Ignition Signal Отсутствие сигнала «IGf» на ECU в течение 4-х последовательных циклов зажигания
21 Oxygen Sensor Обнаружен выход из строя датчика кислорода («OX»)
22, 23 Water Temperature Signal Обрыв или короткое замыкание (КЗ) в цепи датчика температуры охлаждающей жидкости («THW») в течение 0.5 сек или дольше
24 Intake Air Temperature Sensor signal. Обрыв или короткое замыкание (КЗ) в цепи датчика температуры воздуха («THA»), поступающего в двигатель, в течение 0.5 сек или дольше
25 Air-Fuel Ratio Lean Напряжение сигнала от датчика кислорода меньше, чем 0.45 вольта, в течение 120 сек
26 Air-Fuel Ratio Reach Напряжение сигнала от датчика кислорода больше, чем 0.45 вольта, в течение 120 сек
27 Sub Oxygen Sensor signal Обнаружен выход из строя дополнительного датчика кислорода
28 No. 2 Oxygen Sensor signal Обнаружен выход из строя датчика кислорода («OX2»)
31 Air Flow Meter(AFM) Signal или Manifold Absolute Pressure (MAP) signal TCCS с датчиком MAP: Обрыв или КЗ в цепи датчика датчика вакуума во впускном коллекторе (MAP) TCCS с датчиком AFM: Обрыв в цепи сигнала «VC» или КЗ между цепями сигналов «VS» и «E2»
32 Air Flow Meter AFM) Signal TCCS с датчиком AFM: (Обрыв в цепи сигнала «E2» или КЗ между цепями сигналов «VC» и «VS»
34 Turbocharger Pressure signal Давление наддува находится в недопустимых пределах. Возможно, некорректная работа AFM
35 Turbocharger Pressure Sensor signal или HAC Sensor signal Давление наддува находится в недопустимых пределах или обрыв или КЗ в цепи датчика компенсации высоты над уровнем моря (HAC)
41 Throttle Position Sensor signal Обрыв или КЗ в цепи «VTA» датчика положения дроссельной заслонки в течение 0.5 сек или дольше
42 Vehicle Speed Sensor signal Отсутствие сигнала скорости автомобиля («SPD») на ECU при оборотах двигателя между 2500 и 4500 в течение 8 сек или дольше
43 Starter signal Отсутствие сигнала стартера («STA») на ECU до тех пор, пока обороты двигателя не достигнут 800 об/мин в процессе запуска
51 Neutral Start Switch signal Дроссельная заслонка закрыта не полностью (отсутствие сигнала «IDL» на ECU) или рычаг управления трансмиссией находится в положении, отличном от «P» или «N» (присутствие сигнала «NSW» на ECU) или включен кондиционер (присутствие сигнала «A/C» на ECU)
52 Knock Sensor signal Обрыв или КЗ в цепи датчика детонации
53 Knock Sensor signal Отказ подпрограммы обработки ситуации детонации (частичный отказ ECU)
54 Intercooler ECU signal Неисправность промежуточного охладителя воздуха (интеркулера)
71 EGR System malfunction Обрыв или КЗ в цепи датчика температуры выхлопных газов (THG). Температура выхлопных газов ниже, чем температура поступающего в двигатель воздуха плюс 55C и автомобиль находится в движении в течение 25 сек или дольше
72 Fuel Cut Solenoid signal Неисправность соленоида отсечки топлива
78 Fuel Pump Control signal Неисправность бензонасоса

Следует еще раз подчеркнуть, что данная таблица содержит перечень всех известных автору диагностических кодов системы TCCS, но это не означает, что все эти коды могут быть диагностированы компьютером системы TCCS конкретного двигателя. Например, компьютер TCCS двигателя 1G-EU способен диагностировать только коды 11, 12, 13, 14, 22, 23, 31, 32, 41, 42, 43, 51.

Кроме этого, в описании кодов присутствуют ссылки на сигнальные цепи ECU с разного рода обозначениями (например, NSW, THA, IDL), расшифровка которых не дана.

Схема расположения контактов диагностического разъема. Приведены схемы разъемов двух автомобилей.

Источник

Поделиться с друзьями
admin
Полезные авто советы