Топливные элементы для авто

DENSO › Блог › Из чего это сделано: водородные топливные ячейки

Вода из выхлопной трубы?

Итак, есть еще один вариант того, что можно сжигать в ДВС вместо бензина или дизельного топлива, — это водород. Известно, что продуктом окисления водорода является вода. Сжигаем водород в кислороде, получаем энергию для работы поршней, а на выходе — водяной пар. Ну не прекрасно ли? И все же есть свои нюансы: водород при сгорании выделяет больше тепла, чем нефтепродукты, тем самым чересчур раскаляя двигатель. Кроме того, сгорая с воздухом, а не с чистым кислородом, он создает ряд вредных примесей. Все это не позволяет просто так сжигать водород в ДВС.

Однако есть и другое решение, предусматривающее использование водорода в качестве топлива. Еще 200 лет назад был изобретен генератор, в котором водород, соединяясь с кислородом, производит воду, а «побочным» продуктом реакции становится электричество. В двух словах принцип работы таков: объемная ячейка разделяется на две половины пластиной из особого материала, способного пропускать протоны и не пропускать электроны. В каждой из половин ячейки устанавливаются два электрода, связанные между собой в электрическую цепь. В одну половину ячейки подается водород, в другую — кислород. Катализатор, нанесенный на разделяющую мембрану, активирует реакцию водорода с кислородом; при этом атомы водорода расщепляются на протоны и электроны. Протоны проходят сквозь мембрану и, соединяясь с кислородом, дают воду. А электроны уходят в подсоединенную электрическую цепь, давая ток.

Такие водородно-кислородные топливные элементы уже применялись в космосе: они питали энергией советский многоразовый корабль «Буран».

Из космоса в автомобиль

Топливный элемент такого типа удалось приспособить и для автомобиля, причем один из первых вариантов предложили отечественные конструкторы. Компактный водородный генератор состоит из множества ячеек, принцип работы которых описан выше. Напряжение каждой ячейки низкое — от 0.6 до 1.0 В, но, если соединить ячейки последовательно, можно получить необходимое высокое напряжение.

Дальше всех в этом направлении продвинулись японские инженеры. Совместными усилиями специалистов Toyota и DENSO удалось создать эффективный водородно-воздушный генератор, который стал основой для серийной Toyota Mirai.

Блок управления мощностью (PCU) Toyota Mirai производства DENSO решает, когда и как использовать производимую водородным генератором электроэнергию: часть ее система перенаправляет для хранения в литий-ионную батарею. Эта же батарея дополнительно заряжается и при рекуперации энергии торможения. При необходимости выдачи пиковой мощности (во время старта и разгона) используется как энергия водородного генератора, так и запасы батареи.

Запас хода Toyota Mirai второго поколения составляет внушительные 800 км (по циклу NEDC); при этом время полной заправки длится от 3 до 5 минут, что несравнимо быстрее, чем у электромобиля. Второе поколение Mirai с усовершенствованными топливными ячейками дебютировало на Токийском автосалоне два месяца назад, а уже в 2020 году этот автомобиль поступит в серийное производство.

Когда-нибудь — возможно, и не в столь отдаленном, как нам кажется, будущем — в каталоге DENSO для рынка послепродажного обслуживания автомобилей появятся, например, компоненты управления водородной силовой установкой. А пока в нем представлены более традиционные запчасти, обладающие, тем не менее, оригинальным качеством, надежностью и отличными рабочими характеристиками. Подобрать подходящие запчасти можно в нашем электронном каталоге.

Источник

Технология топливных элементов и ее использование в автомобилях

Что такое топливные элементы и их применение в автомобилестроении

Сейчас это словосочетание крепко вошло в обиход всех автомобилистов. Вы безусловно друзья слышали этот термин «топливный элемент» и не единожды. В новостях в интернете, по телевизору и в прессе все чаще мелькают новомодные и неизвестные иногда нам слова. Обычно эти новомодные словечки относятся к рассказам о новейших гибридных автомобилях или к программам развития этих гибридных автомобилей.

Например, еще 11 лет назад в США была запущена такая программа, как «The Hydrogen Fuel Initiative». Она была направлена ​​на разработку водородных топливных элементов и технологий данной инфраструктуры, которые были нужны для того, чтобы сделать автотранспортные средства, использующие топливные элементы, практичными, экономически продуманными и рентабельными к 2020 году. Кстати, за это время на эту программу было выделено более 1 млрд. долларов США, что говорит о серьезной ставке на программу, которую сделали и создали власти Соединенных Штатов и которая была направлена на развитие экологически дружелюбных технологий.

По другую сторону океана автопроизводители тоже не дремали, они продолжали проводить свои изыскания по теме машин с топливными элементами. Например, компании «Honda», «Toyota», «Mercedes-Benz» и даже «Hyundai» продолжали работать над созданием надежной технологии этих топливных элементов.

Наибольшего успеха на данном поприще разработок среди всех мировых автопроизводителей, добились два Японских автопроизводителя, это компании «Toyota» и «Honda». Их модели машин на новых топливных элементах уже пошли в серийное производство, в тоже время как их ближайшие конкуренты тоже следует прямо близко за ними.

Читайте также:  Пострадало авто от урагана

Принцип работы топливного элемента

В сущности, сам топливный элемент представляет собой небольшой двигатель без движущихся частей. С технической точки зрения определить такой топливный элемент можно с позиции, как электрохимическое устройство для преобразования энергии. Он преобразует частицы водорода и кислорода в воду, в процессе попутно производя электричество, то есть постоянный ток.

Существует множество типов топливных элементов, некоторые из них уже используются в автомобилях, ну а другие пока проходят исследовательские тесты. В большинстве из них в качестве основных химических элементов необходимых для преобразования, используется водород и кислород.

Аналогичная процедура происходит и в обычной батарее, отличие заключается только в том, что батарея уже имеет в себе все необходимые химические вещества требуемые для преобразования электричества «на борту», в то время как сам топливный элемент может «заряжаться» от внешнего источника, благодаря чему этот процесс «производства» электричества может быть продолжен. Помимо водяного пара и электричества другим побочным продуктом данной процедуры является выделяемое им тепло.

Водородно-кислородный топливный элемент с протонообменной мембраной содержит в себе протонопроводящую полимерную мембрану, которая разделяет между собой два электрода — анод и катод. Каждый из этих электродов обычно представляет из себя простую угольную пластину (матрицу) с нанесённым на нее катализатором, то есть платиной или сплавом платиноидов и др. композитов.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Катионы водорода проводятся через мембрану по направлению к катоду, но сами электроны отдаются во внешнюю цепь, так как сама мембрана не пропускает эти электроны.

На катализаторе катода молекула кислорода соединяется с электроном который подводится из внешних коммуникаций с пришедшим протоном и преобразует ее в воду, которая является единственным продуктом полученной реакции (в виде пара и/или жидкости).

wikipedia.org

Применение в автомобилях

Первое транспортное средство с этой технологией было сделано еще в 1994 году, когда компания «Mercedes-Benz» представила прототип своего элемента MB100 созданного на основе NECAR1 (новый электрический автомобиль 1). Помимо малой выходной мощности (всего 50 киловатт) самым большим недостатком этой концепции являлся сам топливный элемент, который занимал весь объем грузового отсека автофургона.

Кроме того, с точки зрения пассивной безопасности, это была одна из ужаснейших идей для массового производства, принимая во внимание необходимость установки на борту фургона этого массивного резервуара, который заполнялся легковоспламеняющимся водородом под давлением.

В течение следующего десятилетия данная технология развивалась и одна из последних концепций созданных на топливных элементах от «Мерседес» имела выходную мощность 115 л.с. (85 квт) и диапазон действия около 400 километров перед дозаправкой. Конечно, немцы были не единственными пионерами в разработке топливных элементов будущего. Не надо друзья забывать и про двух японцев, т.е. про компании «Toyota» и «Honda». Одним из крупнейших автомобильных игроков стала компания «Honda», которая представила свой серийный автомобиль с силовой установкой на водородных топливных элементах. Продажи модели FCX Clarity в лизинг на территории США начались летом 2008 года, чуть позже реализация автомобиля перешла и в саму Японию.

Еще дальше пошла фирма «Toyota» со своей моделью Mirai, чья прогрессивная система топливных элементов, работающая на водороде, по-видимому способна предоставить футуристичному автомобилю солидный диапазон действия в 520 км на одном баке, который может быть заправлен менее чем за пять минут, так же как и обычный автомобиль. Показатели расхода топлива поражают любого скептика, они просто невероятны и даже для автомобиля с классической силовой установкой, как модель Toyota Mirai, которая расходует 3,5 литра горючего независимо от того в каких условиях используется автомобиль, в городе ли, на шоссе ли, или в смешанном цикле.

Прошло уже восемь лет. Компания «Honda» потратила это время с большой пользой для своего дела. Второе поколение автомобилей Honda FCX Clarity уже сейчас появляется в продаже. Ее топливные элементы (батареи) стали на 33% более компактными, чем у первой модели автомобиля, а сама ее удельная мощность увеличилась аж на 60%. «Honda» уверяет, что топливный элемент и интегрированный силовой агрегат в Clarity Fuel Cell по размерам может быть сравним с двигателем V6, что оставляет достаточного места для внутреннего пространства в машине пяти пассажирам и для их багажа.

Источник

Автомобили на топливных элементах

Подобно электрическим автомобилям, автомобили на топливных элементах обходятся без двигателя внутреннего сгорания вообще.

Топливные элементы представляют электрохимические устройства, которые преобразуют энергию, запасенную в химической формуле непосредственно в электрическую энергию, воду и тепло.

Как работают автомобили на топливных элементах?

Основополагающим принципом этого источника энергии является электрохимическая реакция используемая для производства электроэнергии. Как и в случае с электрическими ячейками, топливные элементы не ограничены законами термодинамики. Это означает, что они способны достичь более высокой эффективности преобразования энергии, чем обычные двигатели, которые имеют КПД 20% – 25% энергии топлива, но могут достичь до 60%. Однако в отличие от электрической батареи, реактивы должны поставляться постоянно для выработки электрического тока.

Топливный элемент использует водород подаваемый извне для выработки электроэнергии.

Состоит из двух электродов: анод и катод, изготовленные из угольной пластины покрытой платиной. На аноде поданный водород распадается с потерей электрона, на катоде поданный кислород соединяется с пришедшим протоном.

Основным преимуществом водородных двигателей является их способность работать при относительно низких температурах (что сокращает время запуска). Ячейки изготовлены из графита покрытого канавками, которые позволяют легко проходить реагентам при сохранении электрического контакта с электролитом.

Читайте также:  Дилер авто в тамбове

Топливный элемент образовывает ионы водорода имеющие высокое содержание энергии. Однако низкая плотность водорода представляет технические трудности проектирования систем хранения водорода на машине. При комнатной температуре и обычном давлении для хранения эквивалентного количества энергии, содержащегося в типичном бензобаке потребуется бак с водородом объемом более чем в 800 раз больше обычного бака.

Однако были разработаны три основных решения для хранения водорода:

Один из подходов, который позволяет избежать проблемы хранения водорода в машине является генерация газа по требованию.

Как заправлять автомобиль топливным элементом

Известно, что топливо для машины возможно бензин, метанол, водород, газохол и т.п. Все они заполняются обычным способом. Метод заправки топливных элементов машины отличается.

Заправка водородом становится очень дорогим процессом. Хотя до сих пор разрабатывается водородная газовая заправка, все они предполагают использование гибкой связи между заправщиком и автомобилем, который создает запечатанную систему.

Учитывая новизну водородных автомобилей, есть еще сравнительно мало станций заправок водородом во всем мире. Однако с появлением машин на новом принципе растет количество станций. В результате все больше и больше водорода строятся в городах по всей Европе, уже включая Амстердам, Барселона, Гамбург, Лондон, Люксембург, Мадрид, Порто, Рейкьявик, Стокгольм и Штутгарт.

Автомобили на новом принципе лучше для окружающей среды

Если используется не возобновляемые источники энергии, воздействие на выбросы трудно подсчитать, в зависимости от способа хранения бортового топлива и производства топлива. Однако учитывая основные варианты учета диоксида углерода и выбросов метана, автомобили на топливных элементах прогнозируются со значительным снижением в жизненном цикле выбросов парниковых газов – до 55% по сравнению с бензином.

Автомобили на новом принципе значительно более энергоэффективны, чем обычные транспортные средства. Также рекуперативное торможение повышает эффективность использования топлива до 20%. Если возобновляемые источники энергии используются для генерации водорода, жизненный цикл выбросов парниковых газов практически равен нулю за исключением водяного пара. Это истинный автомобиль с нулевым уровнем выбросов.

Стоимость топливных элементов автомобиля?

При промышленном производстве пока нельзя спрогнозировать с уверенностью, сколько будут стоить топливные элементы, но вполне вероятно, что они будут стоить значительно дороже, чем эквивалент бензина или дизельного топлива. Однако цена будет падать, если будет производиться достаточное количество автомобилей на топливных элементах.

Прогнозирование эксплуатационных расходов трудно из-за неопределенности в отношении способа производства и спроса на водородное топливо. По крайней мере в принципе, более высокие расходы на покупку могут компенсироваться более низким расходом на топливо (из-за высокой топливной экономичности автомобилей на новом принципе). Расходы на обслуживание, техническое обслуживание и ремонт топливных элементов остаются неизвестными, но предполагаются чуть меньше, чем для обычных автомобилей из-за низкого количества движущихся частей в элементах двигателя.

Кроме того авто на новых принципах уменьшит проблемы мегаполиса.

Источник

Автомобили на водороде против электромобилей, обзор

1 min

Мир переходит на электромобили и автомобили на водородном топливе — это тенденция. Многие страны полностью откажутся от автомобилей на двигателях внутреннего сгорания уже к 2030 году. Законы о запрете автомашин на бензине введены или рассматриваются в Индии, Великобритании, Норвегии, Бельгии и др. странах. Переход на электромобили неизбежен и идет быстрыми темпами. Но у электрокаров есть серьезный конкурент — автомобили на водороде.

Ученые и эксперты считают что электромобили это лишь переходный этап, а в ближайшем будущем водородные авто заменят электромобили так как они имеют гораздо больше технических преимуществ и главное — более экологичные.

Как работают автомобили на водороде?

Устройство водородного авто во многом напоминает устройство электрокара: тот же электрический двигатель, только аккумулятор получает питание не от электросети, а от результата химической реакции с участием водорода. Сама реакция протекает внутри ячеек своеобразных реакторов — топливных элементов. Из себя ячейка представляет пару пористых электродов (положительного катода и отрицательного анода), разделенных мембраной из полимера, на который тонким слоем нанесен катализатор.

Если представить схематически, то со стороны анода из специального баллона в систему подается водород, а со стороны катода — уже кислород. Их встреча вызывает химическую реакцию, в процессе которой протоны свободно уходят через полимерную мембрану, а электроны — задерживаются, создавая напряжение. Так возникает электричество, которое далее по цепи идет на электродвигатель, приводящий автомобиль в движение.

Как мы видим, выхлоп при такой химической реакции «нулевой» — чистый и безвредный водяной пар, этот момент очень нравится экологам. Подобное устройство также делает водородные автомобили независимыми от привычного техобслуживания — не надо менять опостылевшее масло или свечи. В чем еще один плюс и для экологии, и для кошелька водителя.

Автомобиль на водороде

Существуют и альтернативные способы добычи водорода:

• Из бурого угля — получение недорогого водорода. Однако сырье легко воспламеняется, отчего практически не транспортабельно.
• Из побочных промышленных отходов — их сегодня ровно столько, что полученного водорода хватит для заправки 250-750 тыс. автомобилей.

Таким образом, чтобы автомобили на водороде работали во всем мире, им требуется множество водородных заправок, их сейчас крайне мало. На сегодня водородные заправочные станции распространены лишь в США, Германии, Японии. В России на настоящий день только одна заправка — и та неофициальная. Причин такой малочисленности несколько, основное это:

• Водород — взрывоопасный элемент: хранение «топлива» требует повышенных мер безопасности, а значит — больших трат на постройку, обслуживание объекта, работу квалифицированного персонала.
• Взрывоопасность «топлива» требует соблюдения осторожности и при заправке. Поэтому на большинстве заправочных станций этот процесс автоматизировали, что также требовало немалых расходов.

Читайте также:  Авто программа многодетная семья

Электромобиль пока еще проигрывает автомашине с двигателем внутреннего сгорания, это:

• Ограниченный пробег электрокаров, небольшая дальность расстояний, которые можно проехать на одной зарядке.
• Пока еще малое количество зарядно-заправочных станций.
• Долгий процесс зарядки аккумулятора.
• Трудность эксплуатации при минусовых температурах.

Водородные автомобили имеют следующие возможности:

Автомобили на водороде против электромобилей

Для сравнения возьмем одну из самых ярких моделей автомашин, работающих от сжиженного водорода — кроссовер Nexo от южнокорейского производителя Hyundai:

• 600 км хода (при полностью заправленном баллоне);
• мощность 161 л/с.
• разгон до 100 км/ч всего за 9,5 сек.

Электрокары будет представлять Tesla Model Y, самый ожидаемый из кроссоверов последних лет, представленный компанией харизматичного предпринимателя и миллиардера Илона Маска.

Плюсы автомобиля на водороде

Начнем с главных достоинств Hyundai Nexo:

1. Автомобиль не только не загрязняет атмосферу вредными соединениями и газами, но даже способствует очищению воздуха. Как утверждают разработчики, созданная ими система фильтрации может вытянуть из обрабатываемого воздуха до 99,9 % вредных примесей. За час оборудование очищает несколько десятков килограмма воздуха — это «порция» более чем для 40 человек.

2. Уже проведены исследования, доказывающие, что 10 000 автомобилей, работающих на сжиженном водороде, заменяют собой в условиях крупного города порядка 600 000 взрослых деревьев.

3. Водород — один из самых распространенных элементов из периодической таблицы Менделеева. В это же время литий, необходимый для изготовления аккумуляторов электромобилей, сравнительно редок — производители уже ведут за элемент настоящие «торговые войны».

4. Ученым доступна новая методика перемещения и хранения водорода в машинах: используется модульная установка, позволяющая сохранять элемент в форме аммиака. Перед использованием на тех же кроссоверах «Хендай» оборудование преобразует аммиак обратно в водород.

5. Возможность покупки подержанного водородомобиля: в отличие от электрокара, его топливные элементы изнашиваются значительно медленнее, чем аккумуляторные батареи. Так, ресурс ячейки для протекания химических реакций — 250 тыс. км пробега.

Минусы авто на водороде

Но инновационный водородомобиль имеет также и существенные недостатки:

1. И электрокары, и машины на водородном топливе приводит в движение все тот же электромотор. В первом случае источником энергии для двигателя выступает аккумулятор, а во втором — блоки с топливными элементами. Одним словом водородомобилю опять же требуется электродвигатель.

2. Сжиженный водород пока что — не самое удобное и безопасное топливо: сравнительно быстро расходуется, требует много места и с большими сложностями хранится.

3. Производительность кроссоверов на водороде Hyundai заметно уступает электромобилям Tesla: передовые модели электрокаров разгоняются до 100 км/ч за 2,5 секунды, а не за 9,5.

5. Свободно пользоваться автомобилями на водородном топливе можно только в Калифорнии, где имеются необходимые заправки. Электромобили же распространены более широко — так, станции для подзарядки можно уже найти на пространствах России и Украины.

Главные водородные концепты современности

Познакомимся поближе с самыми популярными автомобилями на водороде:

Toyota Mirai

• Mercedes-Benz GLC F-Cell. Особенность этого автомобиля на водороде в том, что это некий гибрид, при необходимости его можно подзарядить и от электросети. Водитель может выбрать комфортный для себя режим следования: ускоренный заряд автомашины на ходу, использование лишь заряда батареи, работа только на водороде с сохранением заряда аккумулятора и поступление энергии одновременно и от батареи, и от топливных элементов. Обновленная модель может похвастаться мощностью 211 л/с (первоначально — 197 л/с). На 4,4 кг водородного топлива машина проедет 430 км, а при заряде от электророзетки — 50 км.

• BMW X5 i Hydrogen Next. Для основы была взята стандартная серийная платформа, электродвигатель может питаться и от батареи, и от топливных элементов. Мощность немецкой разработки — 170 л/с.

Какие перспективы у автомашин на водороде

Если полистать новости десятилетней давности, то мы увидим, что машины на водородном топливе ставили в один ряд с электрокарами. Сегодня же видно, что такой транспорт обходится слишком дорого, а в большинстве мировых государств еще нет необходимой заправочной сети.

О том, что надежды на водород не оправдались, можно судить по американскому рынку водородных автомобилей — самому крупнейшему в мире. С 2012 года в США было реализовано всего 8000 транспортных средств на водородном топливном элементе. Свободно ездить на водороде можно только в Калифорнии — штате с самой широкой сетью соответствующих заправок. И то, регион периодически страдает от дефицита водорода, из-за чего владельцы не могут пользоваться своими авто.

Уже ясно, что по вопросам экологии водородные машины снова проигрывают электромобилям. То же самое можно сказать и о самом больном вопросе — о стоимости автомобилей. Не вызывает энтузиазма у автовладельцев и небогатый выбор водородных авто. На рынке доступны считанные модели, а многие автопроизводители к 2020 году уже свернули свои водородные проекты: выпуск таких авто обходится в 3 раза дороже, чем электрокаров.

Вывод из всего сказанного: на настоящий момент позиция водорода на топливном рынке оставляет желать лучшего. Водородные проекты не видятся перспективными крупным игрокам мирового автопрома, а население задумывается о приобретении водородной машины в самую последнюю очередь.

Но есть повод надеяться, что инновация не канет в Лету: ведь водородные топливные элементы весьма выгодны при производстве тех тех же паромов или мусоровозов. Инновации еще не раз нас удивят и возможно в скором будущем будут представлены новые технологии водородного двигателя с уникальными характеристиками.

Источник

Поделиться с друзьями
admin
Полезные авто советы