Хладагент r134a для авто

sonic39 › Блог › Хладагент R134a – первый заменитель R12.

76aefc4s 100

Хладагент R134a — первый заменитель R12.

После введения ограничений на эксплуатацию оборудования с содержащими хлор хладонами в качестве первого заменителя R12 стали повсеместно применять HFC-хладагент R134a, обладающий нулевым ODP. Он и сегодня довольно успешно используется в чистом виде в системах кондиционирования и холодильных установках, а также является компонентом множества смесей.

Предпочтение было отдано именно этому хладагенту, поскольку его потребляемая мощность, уровни давления и термодинамические свойства наиболее сопоставимы с R12 при применении в среднетемпературном холодильном оборудовании и системах кондиционирования. Однако тут есть свои «подводные камни». Все дело в том, что удельная холодопроизводительность R134a ниже, чем у 12-го хладона, потому для него необходим компрессор с более высокой объемной мощностью. Также существуют ограничения на использование R134a в системах с низкой температурой испарения.

Испытания в широком температурном диапазоне показали, что производительность хладагента R134a даже выше, чем прогнозировалось. Уровни температур нагнетания, а также масла оказались существенно ниже не только R12, но и переходного хладагента R22. Преимущества для среднетемпературных установок бесспорны — в сравнении с зеотропными смесями хладон R134a показывал в испарителях и конденсорах наилучшие показатели теплопередачи.

Обратная сторона медали.

Акцентируя внимание на явных преимуществах R134a, нельзя умолчать о том, что его использование связано и с немалыми проблемами. В первую очередь это касается подбора подходящего масла. Все традиционные синтетические и минеральные масла, широко используемые в подавляющем большинстве хладоустановок, оказались несовместимы со 134 хладоном. Они не смешиваются с ним, а, следовательно, не транспортируются должным образом по контуру охлаждения. Несмешивающееся масло оседает в теплообменниках и тем самым препятствует теплопередаче, делая невозможной эксплуатацию системы.

Читайте также:  Электромагнит для номера авто

Специально для решения проблемы были разработаны новые смазочные материалы, в которых R134a должным образом растворялся. Они основаны на полиалкиленгликолях и полиолэфирах и именно они по сей день и используются в установках со 134 хладагентом. Общие свойства таких масел схожи с традиционными минеральными, но гигроскопичность их несколько выше, что влечет за собой повышенные требования по специальному обращению при производстве, транспортировке и заправке.

Полиалкиленгликолевые масла (POE) обладают высоким водопоглощением и низкой диэлектрической прочностью, что не позволяет их использовать с полугерметичными и герметичными компрессорами. Их основанная область применения — автомобильные системы кондиционирования, оснащенные компрессорами открытого типа. Скорость циркулирования масла в таких установках высока, поэтому от него требуется оптимальная растворимость.

Главный недостаток гигроскопичного масла — высокий риск просачивания влаги, когда в результате недостаточного обслуживания повышается проницаемость шлангов. Поэтому производители систем климат-контроля активно ищут подходящие альтернативы. В их роли могут выступать нерастворимые алкилаты, смазочные качества которых улучшают специальными присадками. Положительный опыт их использования уже есть, но на практике еще необходима адаптация существующих систем и более тщательные испытания.

Производители систем кондиционирования и холодильных установок, используя R134a, все чаще отдают предпочтение системам, заправляемым поливинилэфирными маслами. Гигроскопичность их достаточно высока, но химически и термически они более стабильны, устойчивы к гидролизу и обладают высокой диэлектрической прочностью. Несмотря на отличные смазочные свойства, такие масла не образуют металлическое «мыло», тем самым, снижая вероятность закупоривания капилляров.

Итак, что же необходимо для использования R134a?

• подходящие компрессоры;
• гигроскопичные масла;
• адаптированные узлы холодильных установок.

Хотя при тестировании систем с эфирными маслами применялись обычные металлические детали, традиционные для CFC хладагентов, в ситуации, когда используются гибкие шланги, эластомеры все же приходится подбирать отдельно. Это требуется для обеспечения минимального остаточного количества влаги и малой проницаемости стенок.

Все установки необходимо с особой тщательностью обезвоживать, в том числе и при проведении технологических работ по заправке и замене масла. В сам холодильный контур рекомендуется дополнительно монтировать мощные фильтры-осушители, характеристики которых должны соответствовать молекулам R134а, имеющим меньший размер.

Читайте также:  Ремонт авто хундай портер

Модернизация оборудования, работающего на R12.

Хотя первоначально рассматривалось несколько различных методик для перевода эксплуатируемой техники на новый хладагент, сегодня чаще всего используется наиболее экономичное и технически приемлемое решение, основанное на использовании эфирных масел. Они могут смешиваться с минеральными и при соблюдении определенных требований применяться в системах с CFC хладагентами. Главное условие — тщательное удаление воды и остаточного хлора с последующей установкой фильтров осушителей.

Однако если ранее (еще при R12) в установке использовалось масло с недостаточной химической стабильностью, что случается при некачественном техническом обслуживании оборудования, высокой температурной нагрузке или малой мощности осушителей, то в них могут при переходе на R134а образовываться отложения, содержащие хлор. Такие продукты разложения масел попадают в регулирующие устройства и компрессор, выводя их из строя. Поэтому переводить на новый хладагент рекомендуют только современные установки, находящиеся в исправном состоянии. В ряде случаев им также потребуется дополнительная индивидуальная адаптация.

Источник

R134a справочная информация

(фреон R134a, хладон 134a, R134a, HFC 134a)

Основные характеристики

Физические свойства фреон R134a

Давление пара, плотность и поверхностное натяжение на линии равновесия жидкости – пар

Калорические свойства на линии равновесия жидкость – пар

Вязкость и теплопроводность на линии равновесия жидкость – пар

Другие физические свойства

Растворимость

Массовая растворимость 1,1,1,2-тетрафторэтан в воде при 20 ℃ составляет 0,15%, а воды в 1,1,1,2-тетрафторэтане – 0,11%.

Молярная растворимость 1,1,1,2-тетрафторэтана в диметиловом эфире 1,8-октандиола при 35 ℃ и 0,793 МПа составляет 61,3%.

Экологические характеристики и пожароопасность

ODP=0; HGWP=0,28; GWP=1300. ПДК р.з не установлена. Класс опасности 4.

При соприкосновении с пламенем и горячими поверхностями разлагается с образование высокотоксичных продуктов.

Трудногорючий газ. Концентрационные пределы распространения пламени в воздухе отсутствуют.

Коррозийное действие на металлы и неметаллы фреона R134a

Металлические материалы, стойкие при температуре до 150 ℃: стали 20Х13, 14Х17Н2, 08Х21Н6М2Т, 12Х18Н10Т, 10Х17Н13М2Т, 06ХН28МДТ, никель Н2 и его сплавы ХН78Т, НМЖМц 28-2,5-1,5, алюминий АД1, титан ВТ1 (скорость коррозии не более 0,001 мм/год); сталь Ст3, медь М1, бронза Бр.АМц, латунь Л62 (скорость коррозии 0,02-0,005 мм/год). Присутствие влаги не влияет на коррозионную стойкость.

Читайте также:  Ремонт авто какие расходы

Неметаллические материалы, стойкие при 50℃ (набухание не более 15% по массе): фторопласт 4, полиамид, полиэтилен, полипропилен, парониты ПМБ1, ТИИР, резины на основе этилен-пропиленового и бутадиен-нитрильного каучуков.

Методы синтеза

1. Фторирование 1,1,1-трифторхлорэтана суспензией фторида щелочного металла во фтороводородной кислоте при повышенной температуре:

CF 3 CClH 2 O+HF → KF;H 2 O;200-300℃ → CF 2 CFH 2 +HCl.

2. Газофазное каталитическое фторирование 1,1,1-трифторхлорэтана фтороводородом в присутствии кислорода при повышенной температуре:

C F 3 CCl H 2 O+HF → O 2 ;Cr F 3 ;400℃ → C F 3 CF H 2 +HCl.

3. Газофазное каталитическое гидрофторирование трифторэтилена при повышенной температуре:

4. Газофазное каталитическое гидрирование 1,1,1,2-тетрафторхлорэтана водородом на палладиевом катализаторе при повышенной температуре:

CF 3 CFClH+H 2 → Pd/C;350-420℃ → CF 3 CFH 2 +HCl.

Промышленное производство хладагента R134a

В промышленности получают газофазным каталитическим гидрофторированием трихлорэтилена при высокой температуре в две стадии.

Процесс получения состоит из следующих основных стадий:

Технологическая схема

Трихлорэтилен и фтороводород подают в реакторы фторирования. Процесс проводят при температуре 340-400 ℃ и давлении 0,5-1 МПа. Из продуктов синтеза выделяют газообразный хлороводород, отделяют высококипящие продукты, рециркулируемые в реактор. Очистку сырца от непредельных соединений осуществляют каталитическим гидрофторированием, от фтороводорода – водной отмывкой и нейтрализацией в скруббере, орошаемом 10%-м раствором едкого натра, от непредельных соединений – каталитическим окислением. После осушки в колонне с твердым адсорбентом сырец освобождают от инертов в отдувочной колонне, от низкокипящих примесей и окончательно очищают.

Технические требования к готовому продукту

Транспортировка и хранение фреона R134a

Применение фреона R134a

Хладагент, пропеллент и вспениватель для получения пенопластов. Широкое применение фреон нашел в системах кондиционирования автомобилей и охлаждающих системах.

ИСТОЧНИК: «Промышленные фторорганические продукты», 2-е издание, переработанное и дополненное

Источник

Поделиться с друзьями
admin
Полезные авто советы
Adblock
detector