Хладагент r134a для авто

Автомобильные советы

sonic39 › Блог › Хладагент R134a – первый заменитель R12.

Хладагент R134a — первый заменитель R12.

После введения ограничений на эксплуатацию оборудования с содержащими хлор хладонами в качестве первого заменителя R12 стали повсеместно применять HFC-хладагент R134a, обладающий нулевым ODP. Он и сегодня довольно успешно используется в чистом виде в системах кондиционирования и холодильных установках, а также является компонентом множества смесей.

Предпочтение было отдано именно этому хладагенту, поскольку его потребляемая мощность, уровни давления и термодинамические свойства наиболее сопоставимы с R12 при применении в среднетемпературном холодильном оборудовании и системах кондиционирования. Однако тут есть свои «подводные камни». Все дело в том, что удельная холодопроизводительность R134a ниже, чем у 12-го хладона, потому для него необходим компрессор с более высокой объемной мощностью. Также существуют ограничения на использование R134a в системах с низкой температурой испарения.

Испытания в широком температурном диапазоне показали, что производительность хладагента R134a даже выше, чем прогнозировалось. Уровни температур нагнетания, а также масла оказались существенно ниже не только R12, но и переходного хладагента R22. Преимущества для среднетемпературных установок бесспорны — в сравнении с зеотропными смесями хладон R134a показывал в испарителях и конденсорах наилучшие показатели теплопередачи.

Обратная сторона медали.

Акцентируя внимание на явных преимуществах R134a, нельзя умолчать о том, что его использование связано и с немалыми проблемами. В первую очередь это касается подбора подходящего масла. Все традиционные синтетические и минеральные масла, широко используемые в подавляющем большинстве хладоустановок, оказались несовместимы со 134 хладоном. Они не смешиваются с ним, а, следовательно, не транспортируются должным образом по контуру охлаждения. Несмешивающееся масло оседает в теплообменниках и тем самым препятствует теплопередаче, делая невозможной эксплуатацию системы.

Специально для решения проблемы были разработаны новые смазочные материалы, в которых R134a должным образом растворялся. Они основаны на полиалкиленгликолях и полиолэфирах и именно они по сей день и используются в установках со 134 хладагентом. Общие свойства таких масел схожи с традиционными минеральными, но гигроскопичность их несколько выше, что влечет за собой повышенные требования по специальному обращению при производстве, транспортировке и заправке.

Полиалкиленгликолевые масла (POE) обладают высоким водопоглощением и низкой диэлектрической прочностью, что не позволяет их использовать с полугерметичными и герметичными компрессорами. Их основанная область применения — автомобильные системы кондиционирования, оснащенные компрессорами открытого типа. Скорость циркулирования масла в таких установках высока, поэтому от него требуется оптимальная растворимость.

Главный недостаток гигроскопичного масла — высокий риск просачивания влаги, когда в результате недостаточного обслуживания повышается проницаемость шлангов. Поэтому производители систем климат-контроля активно ищут подходящие альтернативы. В их роли могут выступать нерастворимые алкилаты, смазочные качества которых улучшают специальными присадками. Положительный опыт их использования уже есть, но на практике еще необходима адаптация существующих систем и более тщательные испытания.

Производители систем кондиционирования и холодильных установок, используя R134a, все чаще отдают предпочтение системам, заправляемым поливинилэфирными маслами. Гигроскопичность их достаточно высока, но химически и термически они более стабильны, устойчивы к гидролизу и обладают высокой диэлектрической прочностью. Несмотря на отличные смазочные свойства, такие масла не образуют металлическое «мыло», тем самым, снижая вероятность закупоривания капилляров.

Итак, что же необходимо для использования R134a?

• подходящие компрессоры;
• гигроскопичные масла;
• адаптированные узлы холодильных установок.

Хотя при тестировании систем с эфирными маслами применялись обычные металлические детали, традиционные для CFC хладагентов, в ситуации, когда используются гибкие шланги, эластомеры все же приходится подбирать отдельно. Это требуется для обеспечения минимального остаточного количества влаги и малой проницаемости стенок.

Все установки необходимо с особой тщательностью обезвоживать, в том числе и при проведении технологических работ по заправке и замене масла. В сам холодильный контур рекомендуется дополнительно монтировать мощные фильтры-осушители, характеристики которых должны соответствовать молекулам R134а, имеющим меньший размер.

Модернизация оборудования, работающего на R12.

Хотя первоначально рассматривалось несколько различных методик для перевода эксплуатируемой техники на новый хладагент, сегодня чаще всего используется наиболее экономичное и технически приемлемое решение, основанное на использовании эфирных масел. Они могут смешиваться с минеральными и при соблюдении определенных требований применяться в системах с CFC хладагентами. Главное условие — тщательное удаление воды и остаточного хлора с последующей установкой фильтров осушителей.

Однако если ранее (еще при R12) в установке использовалось масло с недостаточной химической стабильностью, что случается при некачественном техническом обслуживании оборудования, высокой температурной нагрузке или малой мощности осушителей, то в них могут при переходе на R134а образовываться отложения, содержащие хлор. Такие продукты разложения масел попадают в регулирующие устройства и компрессор, выводя их из строя. Поэтому переводить на новый хладагент рекомендуют только современные установки, находящиеся в исправном состоянии. В ряде случаев им также потребуется дополнительная индивидуальная адаптация.

Источник

R134a справочная информация

(фреон R134a, хладон 134a, R134a, HFC 134a)

Основные характеристики

Физические свойства фреон R134a

Давление пара, плотность и поверхностное натяжение на линии равновесия жидкости – пар

Калорические свойства на линии равновесия жидкость – пар

Вязкость и теплопроводность на линии равновесия жидкость – пар

Другие физические свойства

Растворимость

Массовая растворимость 1,1,1,2-тетрафторэтан в воде при 20 ℃ составляет 0,15%, а воды в 1,1,1,2-тетрафторэтане – 0,11%.

Молярная растворимость 1,1,1,2-тетрафторэтана в диметиловом эфире 1,8-октандиола при 35 ℃ и 0,793 МПа составляет 61,3%.

Экологические характеристики и пожароопасность

ODP=0; HGWP=0,28; GWP=1300. ПДК р.з не установлена. Класс опасности 4.

При соприкосновении с пламенем и горячими поверхностями разлагается с образование высокотоксичных продуктов.

Трудногорючий газ. Концентрационные пределы распространения пламени в воздухе отсутствуют.

Коррозийное действие на металлы и неметаллы фреона R134a

Металлические материалы, стойкие при температуре до 150 ℃: стали 20Х13, 14Х17Н2, 08Х21Н6М2Т, 12Х18Н10Т, 10Х17Н13М2Т, 06ХН28МДТ, никель Н2 и его сплавы ХН78Т, НМЖМц 28-2,5-1,5, алюминий АД1, титан ВТ1 (скорость коррозии не более 0,001 мм/год); сталь Ст3, медь М1, бронза Бр.АМц, латунь Л62 (скорость коррозии 0,02-0,005 мм/год). Присутствие влаги не влияет на коррозионную стойкость.

Неметаллические материалы, стойкие при 50℃ (набухание не более 15% по массе): фторопласт 4, полиамид, полиэтилен, полипропилен, парониты ПМБ1, ТИИР, резины на основе этилен-пропиленового и бутадиен-нитрильного каучуков.

Методы синтеза

1. Фторирование 1,1,1-трифторхлорэтана суспензией фторида щелочного металла во фтороводородной кислоте при повышенной температуре:

CF 3 CClH 2 O+HF → KF;H 2 O;200-300℃ → CF 2 CFH 2 +HCl.

2. Газофазное каталитическое фторирование 1,1,1-трифторхлорэтана фтороводородом в присутствии кислорода при повышенной температуре:

C F 3 CCl H 2 O+HF → O 2 ;Cr F 3 ;400℃ → C F 3 CF H 2 +HCl.

3. Газофазное каталитическое гидрофторирование трифторэтилена при повышенной температуре:

4. Газофазное каталитическое гидрирование 1,1,1,2-тетрафторхлорэтана водородом на палладиевом катализаторе при повышенной температуре:

CF 3 CFClH+H 2 → Pd/C;350-420℃ → CF 3 CFH 2 +HCl.

Промышленное производство хладагента R134a

В промышленности получают газофазным каталитическим гидрофторированием трихлорэтилена при высокой температуре в две стадии.

Процесс получения состоит из следующих основных стадий:

Технологическая схема

Трихлорэтилен и фтороводород подают в реакторы фторирования. Процесс проводят при температуре 340-400 ℃ и давлении 0,5-1 МПа. Из продуктов синтеза выделяют газообразный хлороводород, отделяют высококипящие продукты, рециркулируемые в реактор. Очистку сырца от непредельных соединений осуществляют каталитическим гидрофторированием, от фтороводорода – водной отмывкой и нейтрализацией в скруббере, орошаемом 10%-м раствором едкого натра, от непредельных соединений – каталитическим окислением. После осушки в колонне с твердым адсорбентом сырец освобождают от инертов в отдувочной колонне, от низкокипящих примесей и окончательно очищают.

Технические требования к готовому продукту

Транспортировка и хранение фреона R134a

Применение фреона R134a

Хладагент, пропеллент и вспениватель для получения пенопластов. Широкое применение фреон нашел в системах кондиционирования автомобилей и охлаждающих системах.

ИСТОЧНИК: «Промышленные фторорганические продукты», 2-е издание, переработанное и дополненное

Источник

Поделиться с друзьями
admin
Оцените автора
( Пока оценок нет )
Полезные авто советы